CONTENTS

Acknowledgements i-ii

Preface iii-iv

CHAPTER 1: INTRODUCTION 1-49

1.1 Fuel Cell 1-20

1.1.1 Types of Fuel Cell 5-6

1.1.2 Thermodynamics of DMFCs 6-9

1.1.3 Electrocatalysis 9

1.1.4 Electrocatalytic Scale 10

1.1.5 Methanol oxidation reaction 10-11

1.1.6 Oxygen reduction reaction 11-12

1.1.7 Drawbacks and remedial measures of DMFCs 13

1.1.7.1 Drawbacks of DMFCs 13

1.1.7.2 Remedial measures 13

1.1.7.3 Research work carried out 14-20

1.2 Modification of conductive membrane 20-22

1.3 Novel Pt-free new electrode materials 22-33

1.3.1 Methanol oxidation reaction 22-33

1.3.1.1 Pure Ni and Ni-based metal composites and alloy 22-23

1.3.1.2 Transition metal complex oxide 23-24

1.3.1.3 Pure Pd or Pd-based metal composite and alloys 24-33

1.3.2 Oxygen reduction reaction 33-49

1.3.2.1 Pd and Pd based catalysts 34-42
1.3.2.2 Oxide based composite 42-45
1.3.2.3 Transition metal chalcogenides 45-47
1.3.2.4 Transition metal macrocycles 47-49

CHAPTER 2: OBJECTIVE 50-51

CHAPTER 3: EXPERIMENTAL 52-61

CHAPTER 4: RESULTS AND DISCUSSION 62-137
Section 4.1: Graphene-cobaltite-Pd hybrid materials 62-80
Section 4.2: Graphene-MMn$_2$O$_4$-Pd hybrid materials (M=Mn,Co,Fe,Cu) 81-96
Section 4.3: Graphene-MnMoO$_4$-Pd composites 97-106
Section 4.4: Graphene-Pd-Co composites 107-117
Section 4.5: Graphene-cobaltite-Pd hybrid materials 118-126
Section 4.6: Graphene-MMn$_2$O$_4$-Pd hybrid materials (M=Mn,Co,Fe,Cu) 127-136

CHAPTER 5: SUMMARY 137-145

BIBLIOGRAPHY 146-185

List of symbols

APPENDIX

(Paper published
and Personal
Profile)