Browsing by Author "Virendra Kumar Mishra"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Publication Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent(2008) Virendra Kumar Mishra; Alka Rani Upadhyay; Sudhir Kumar Pandey; B.D. TripathiFive heavy metals Cu, Cd, Mn, Pb and Hg were found in high concentration from three sampling sites located in Asia's largest anthropogenic lake Govind Ballabh Pant GBP Sagar. Concentrations of these heavy metals were measured in Water, bottom sediment and in different parts of the aquatic macrophytes collected from the reservoir. Plants collected from the lake were Eichhornia crassipes, Azolla pinnata, Lemna minor, Spirodela polyrrhiza, Potamogeton pectinatus, Marsilea quadrifolia, Pistia stratiotes, Ipomea aquqtica, Potamogeton crispus, Hydrilla verticillata and Aponogeton natans. These plants have shown the high concentrations of Cu, Cd, Mn, Pb and Hg in their different parts due to bioaccumulation. In general plant roots exhibited higher concentrations of heavy metals than corresponding sediments. A comparison between different morphological tissues of the sampled plants reveled the metal concentration in following order roots > leaves. Analyses of bottom sediment indicated the higher concentrations of Cd, Mn, Cu and Pb. Strong positive correlations were obtained between the metals in water and in plants as well as between metal in sediment and in plants. Indicating the potential of these plants for pollution monitoring of these metals. © Springer Science+Business Media B.V. 2007.Publication Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes(2008) Virendra Kumar Mishra; B.D. TripathiUnder the present investigation effectiveness of three aquatic macrophytes Pistia stratiotes L. (water lettuce), Spirodela polyrrhiza W. Koch (duckweed) and Eichhornia crassipes were tested for the removal of five heavy metals (Fe, Zn, Cu, Cr and Cd). These plants were grown at three different concentrations (1.0, 2.0 and 5.0 mg l-1) of metals in laboratory experiment. Result revealed high removal (>90%) of different metals during 15 days experiment. Highest removal was observed on 12th day of experiment, thereafter it decreased. Results revealed E. crassipes as the most efficient for the removal of selected heavy metals followed by P. stratiotes and S. polyrrhiza. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the water. Significant correlations between metal concentration in final water and macrophytes were obtained. Plants have accumulated heavy metals in its body without the production of any toxicity or reduction in growth. Selected plants shown a wide range of tolerance to all of the selected metals and therefore can be used for large scale removal of heavy metals from waste water. © 2008 Elsevier Ltd. All rights reserved.Publication Dust deposition in a sub-tropical opencast coalmine area, India(Academic Press, 2008) Sudhir Kumar Pandey; B.D. Tripathi; Virendra Kumar MishraThis paper provides baseline information about the total annual dust fall, and its constituents and seasonal variation, from a sub-tropical opencast coalmine area in Bina, India. Dust samples were collected monthly for 2 years (June 2002-May 2004) from five sampling sites in the region and analyzed in the laboratory for water-soluble and -insoluble matter. Water-insoluble components constituted the major fraction of the total annual dust fall. Two-way ANOVA indicated significant variations in dust fall at different sites, over the months and in their interactions. The dust deposition rate was highest during summer (March-June), followed by winter (November-February) and lowest in the rainy season (July-October). Maximum dust fall was observed near the coal handling plant (at site 2) followed by the receiving pit of the coal handling plant (site 3), near the main sub-station (site 4), Jawahar colony (site 1) and Gharasari village (site 5). An inverse and significant relation was observed between dust fall and precipitation. Our studies have shown that the main residential areas are experiencing higher levels of dust fall which makes them unsuitable for living. We suggest that residential areas should be moved farther away from the mining area in the opposite direction of prevalent winds. © 2007 Elsevier Ltd. All rights reserved.Publication Dynamics of traffic noise in a tropical city Varanasi and its abatement through vegetation(2008) Vinita Pathak; Brahma D. Tripathi; Virendra Kumar MishraNoise level monitoring and its reduction with different width and height of vegetation belt were studied in the Varanasi city. Noise level monitoring of the Varanasi city revealed the fact that area category A (without vegetation) was highly polluted as compare to area category B (with vegetation) having less fluctuation of traffic load. Four plant species Putranjeva roxburghi, Cestrum nocturnum, Hibiscus rosasinensis and Murraya peniculata were tested for noise reduction study at different frequencies. Experiment revealed the fact that H. rosasinensis reduced noise highest at both low and high frequencies (100-500 Hz, 22 dB and 2.5-6.3 KHz 26 dB), followed by M. peniculata (100-500 Hz, 18 dB and 2.5-6.3 KHz 20 dB), P. roxburghi (100-500 Hz 15 dB and 2.5-6.3 KHz 17 dB) and C. nocturnum (100-500 Hz 9 dB and 2.5-6.3 KHz 14 dB). Significance of vegetation belt in noise reduction was established with multiple regression models. © Springer Science+Business Media B.V. 2007.Publication Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes(2008) Virendra Kumar Mishra; Alka Rani Upadhyaya; Sudhir Kumar Pandey; B.D. TripathiThree aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low. © 2007 Elsevier Ltd. All rights reserved.Publication Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes(2008) Virendra Kumar Mishra; Alka Rani Upadhyay; Vinita Pathak; B.D. TripathiUnder the present investigation phytoremediation of mercury and arsenic from a tropical open cast coalmine effluent was performed. Three aquatic macrophytes Eichhornia crassipes, Lemna minor and Spirodela polyrrhiza removed appreciable amount of mercury and arsenic during 21 days experiment. Removal capacities of these macrophytes were found in the order of E. crassipes > L. minor > S. polyrrhiza. Translocation factor (shot to root ratio of heavy metals) revealed low transportation of metals from root to leaves leading higher accumulation of metals in root as compared to leaves of the plant. It was evident from plant tissue analysis that mercury and arsenic up take by macrophytes had deteriorated the N, P, K, chlorophyll and protein content in these macrophytes. Correlations between removal of arsenic and mercury from mining effluent and its increase in plant parts were highly significant. Results favoured selected species to use as promising accumulator of metals. © 2008 Springer Science+Business Media B.V.