Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse
  • Quick Links
    • Central Library
    • Digital Library
    • BHU Website
    • BHU Theses@Shodhganga
    • BHU IRINS
  • Contact Us
    • For any query, email: computer.cl@bhu.ac.in
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chakraborty, Rajarshi"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    PublicationArticle
    Application of a microwave synthesized ultra-smooth a-C thin film for the reduction of dielectric/semiconductor interface trap states of anoxide thin film transistor
    (Royal Society of Chemistry, 2022) Pal, Nila; Thakurta, Baishali; Chakraborty, Rajarshi; Pandey, Utkarsh; Acharya, Vishwas; Biring, Sajal; Pal, Monalisa; Pal, Bhola N.
    In high-κ dielectric-based thin-film transistors (TFTs), tailoring the surface of the gate dielectric layer is a crucial issue for the improvement of the device performance. Herein, a simple solution-processed ultra-smooth amorphous-carbon (a-C) film is applied as a surface modification layer on the top of the high-κ ion-conducting Li-Al2O3 dielectric of a bottom gated SnO2 TFT. The a-C film minimizes the surface roughness of the gate dielectric and forms a strong coordination bond between the doped nitrogen of the a-C film and tin (Sn) of the upper lying SnO2 semiconducting channel, which lowers the gate leakage current, carrier scattering and trap state density at the dielectric/semiconductor interface successfully. As a consequence, the TFT with an a-C interface shows an improvement in the carrier mobility by 6.7 times with a higher ON/OFF ratio and a lower subthreshold swing (SS) by 3.8 times. An optimized device with an a-C gate interface shows a saturation carrier mobility, ON/OFF ratio and SS value of 21.1 cm2 V−1 s−1, 7.0 × 104, and 147 mV dec−1, respectively. Moreover, a significant improvement in the cycling electrical stability has been observed which is an outcome of a reduced trap state of an a-C modified TFT. © 2022 The Royal Society of Chemistry.

Content copyright © 2025 Banaras Hindu University, Varanasi

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Software by Dspace