Browsing by Author "Dutta, Arnab"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Density Functional Theory-Guided Photo-Triggered Anticancer Activity of Curcumin-Based Zinc(II) Complexes(American Chemical Society, 2023) Kushwaha, Rajesh; Singh, Virendra; Peters, Silda; Yadav, Ashish K.; Dolui, Dependu; Saha, Sukanta; Sarkar, Sujit; Dutta, Arnab; Koch, Biplob; Sadhukhan, Tumpa; Banerjee, SamyaPhotodynamic therapy (PDT) has evolved as a new therapeutic modality for cancer treatment with fewer side effects and drug resistance. Curcumin exhibits PDT activity, but its low bioavailability restricts its clinical application. Here, the bioavailability of curcumin was increased by its complex formation with the Zn(II) center. For a structure-activity relationship study, Zn(II)-based complexes (1-3) comprising N^N-based ligands (2,2?-bipyridine in 1 and 2 or 1,10-phenanthroline in 3) and O^O-based ligands (acetylacetone in 1, monoanionic curcumin in 2 and 3) were synthesized and thoroughly characterized. The X-ray structure of the control complex, 1, indicated a square pyramidal shape of the molecules. Photophysical and TD-DFT studies indicated the potential of 2 and 3 as good visible light type-II photosensitizers for PDT. Guided by the TD-DFT studies, the low-energy visible light-triggered singlet oxygen (1O2) generation efficacy of 2 and 3 was explored in solution and in cancer cells. As predicted by the TD-DFT calculations, these complexes produced 1O2 efficiently in the cytosol of MCF-7 cancer cells and ultimately displayed excellent apoptotic anticancer activity in the presence of light. Moreover, the molecular docking investigation showed that complexes 2 and 3 have very good binding affinities with caspase-9 and p-53 proteins and could activate them for cellular apoptosis. Further molecular dynamics simulations confirmed the stability of 3 in the caspase-9 protein binding site. � 2023 American Chemical Society.Publication Polypyridyl CoII-Curcumin Complexes as Photoactivated Anticancer and Antibacterial Agents(John Wiley and Sons Inc, 2023) Yadav, Ashish Kumar; Singh, Virendra; Kushwaha, Rajesh; Dolui, Dependu; Rai, Rohit; Dhar, Prodyut; Dutta, Arnab; Koch, Biplob; Banerjee, SamyaFour new CoII complexes, [Co(bpy)2(acac)]Cl (1), [Co(phen)2(acac)]Cl (2), [Co(bpy)2(cur)]Cl (3), [Co(phen)2(cur)]Cl (4), where bpy=2,2�-bipyridine (1 and 3), phen=1,10-phenanthroline (2 and 4), acac=acetylacetonate (1 and 2), cur=curcumin monoanion (3 and 4) have been designed, synthesized and fully characterized. The X-ray crystal structures of 1 and 2 indicated that the CoN4O2 core has a distorted octahedral geometry. The photoactivity of these complexes was tuned by varying the ? conjugation in the ligands. Curcumin complexes 3 and 4 had an intense absorption band near 435 nm, which made them useful as visible-light photodynamic therapy agents; they also showed fluorescence with ?em?565 nm. This fluorescence was useful for studying their intracellular uptake and localization in MCF-7 breast cancer cells. The acetylacetonate complexes (1 and 2) were used as control complexes to understand the role of curcumin. The white-light-triggered anticancer profiles of the cytosol targeting complexes 3 and 4 were investigated in detail. These non-dark toxic complexes displayed significant apoptotic photo-cytotoxicity (under visible light) against MCF-7 cells through ROS generation. The control complexes 1 and 2 did not induce significant cell death in the light or dark. Interestingly, 1-4 produced a remarkable antibacterial response upon light exposure. Overall, the reported results here can increase the boundary of the CoII-based anticancer and antibacterial drug development. � 2023 Wiley-VCH GmbH.