Browsing by Author "Gaurav A.K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chickpea seed endophyte Enterobacter sp. mediated yield and nutritional enrichment of chickpea for improving human and livestock health(Frontiers Media SA, 2024) Mukherjee A.; Gaurav A.K.; Chouhan G.K.; Singh S.; Sarkar A.; Abeysinghe S.; Verma J.P.Chickpeas (Cicer arietinum L.) are used as a good source of proteins and energy in the diets of various organisms including humans and animals. Chickpea straws can serve as an alternative option for forage for different ruminants. This research mainly focussed on screening the effects of adding beneficial chickpea seed endophytes on increasing the nutritional properties of the different edible parts of chickpea plants. Two efficient chickpea seed endophytes (Enterobacter sp. strain BHUJPCS-2 and BHUJPCS-8) were selected and applied to the chickpea seeds before sowing in the experiment conducted on clay pots. Chickpea seeds treated with both endophytes showed improved plant growth and biomass accumulation. Notably, improvements in the uptake of mineral nutrients were found in the foliage, pericarp, and seed of the chickpea plants. Additionally, nutritional properties such as total phenolics (0.47, 0.25, and 0.55 folds), total protein (0.04, 0.21, and 0.18 folds), carbohydrate content (0.31, 0.32, and 0.31 folds), and total flavonoid content (0.45, 027, and 0.8 folds) were increased in different parts (foliage, pericarp, and seed) of the chickpea plants compared to the control plants. The seed endophyte-treated plants showed a significant increase in mineral accumulation and improvement in nutrition in the different edible parts of chickpea plants. The results showed that the seed endophyte-mediated increase in dietary and nutrient value of the different parts (pericarp, foliage, and seeds) of chickpea are consumed by humans, whereas the other parts (pericarp and foliage) are used as alternative options for forage and chaff in livestock diets and may have direct effects on their nutritional conditions. Copyright � 2024 Mukherjee, Gaurav, Chouhan, Singh, Sarkar, Abeysinghe and Verma.Item Impact of bacterial volatiles on the plant growth attributes and defense mechanism of rice seedling(Elsevier Ltd, 2024) Goyal T.; Mukherjee A.; Chouhan G.K.; Gaurav A.K.; Kumar D.; Abeysinghe S.; Verma J.P.Rice is a major dietary element for about two billion people worldwide and it faces numerous biotic and abiotic stress for its cultivation. Rice blast disease caused by Magnaporthe oryzae reduce up to 30 % rice yield. Overuse of synthetic chemicals raises concerns about health and environment; so, there is an urgent need to explore innovative sustainable strategies for crop productivity. The main aim of this study is to explore the impact of bacterial volatiles (BVCs) on seedling growth and defense mechanisms of rice under in-vitro condition. On the basis of plant growth promoting properties, six bacterial strains were selected out of ninety-one isolated strains for this study; Pantoea dispersa BHUJPVR01, Enterobacter cloacae BHUJPVR02, Enterobacter sp. BHUJPVR12, Priestia aryabhattai BHUJPVR13, Pseudomonas sp. BHUJPVWRO5 and Staphylococcus sp. BHUJPVWLE7. Through the emission of bacterial volatiles compounds (BVCs), Enterobacter sp., P. dispersa and P. aryabhattai significantly reduces the growth of rice blast fungus Magnaporthe oryzae by 69.20 %, 66.15 % and 62.31 % respectively. Treatment of rice seedlings with BVCs exhibited significant enhancement in defence enzyme levels, including guaiacol peroxidase, polyphenol oxidase, total polyphenols, and total flavonoids by a maximum of up to 24 %, 48 %, 116 % and 80 %, respectively. Furthermore, BVCs effectively promote shoot height, root height, and root counts of rice. All BVCs treated plant showed a significant increase in shoot height. P. dispersa treated plants showed the highest increase of 60 % shoot and 110 % root length, respectively. Root counts increased up to 30% in plants treated with E. cloacae and Staphylococcus sp. The BVCs can be used as a sustainable approach for enhancing plant growth attributes, productivity and defence mechanism of rice plant under biotic and abiotic stresses. � 2024