Browsing by Author "Hazra, Kali K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication A state of the art review in crop residue burning in India: Previous knowledge, present circumstances and future strategies(Elsevier B.V., 2022) Dutta, Asik; Patra, Abhik; Hazra, Kali K.; Nath, Chaitanya P.; Kumar, Narendra; Rakshit, AmitavaSustainable management of surplus paddy residue in the Indo-Gangetic plain is a back-breaking task for farmers due to lack of viable options. Eventually, farmers prefer to incinerate it mindlessly. Sustainable residue management is important because paddy straws are rich in nutrients and can be translated into value added products. Several important reasons like short time span for sowing wheat, limited farm mechanisation, scarce manpower and poor acceptability of paddy straw as fodder are the root causes behind this residue burning. The aim of this paper is to find the fundamental causes behind this illicit practice and mark the harmful effects of residue burning on ecosystem. This manuscript also deciphers in depth strategies, environmental laws, socio-economic policy frameworks and future thrusts which would offer multifaceted avenues for the sustainable management of crop residues. Losses of essential nutrients from the soil and in the residue, along with emission of potential greenhouse gases (GHGs) are the major repercussions of this mal-practice. Adaption and commercialisation of resource conservation technologies like conservation agriculture (CA) with low silica content in rice varieties are excellent opportunities to look after. Value addition by preparation of compost, mushroom production, biogas/oil generation, and producing energy in the power plants are new avenues to convert this waste into wealth. Respective state and central government along with different private organisations are working hand in hand to spread awareness and control stubble burning. Fostering the current technologies through policy interventions and organising training camps in the village level with monetary incentives are the important strategies to look for. � 2022 The Author(s)Publication Multi-location evaluation of mungbean (Vigna radiata L.) in Indian climates: Ecophenological dynamics, yield relation, and characterization of locations(Frontiers Media S.A., 2022) Parihar, Ashok K.; Gupta, Sanjeev; Hazra, Kali K.; Lamichaney, Amrit; Sen Gupta, Debjyoti; Singh, Deepak; Kumar, Raju; Singh, Anil K.; Vaishnavi, Rakesh; Jaberson, M. Samuel; Das, Sankar P.; Dev, Jai; Yadav, Rajesh K.; Jamwal, B.S.; Choudhary, B.R.; Khedar, O.P.; Prakash, Vijay; Dikshit, Harsh K.; Panwar, R.K.; Katiyar, Manoj; Kumar, Pankaj; Mahto, C.S.; Borah, H.K.; Singh, M.N.; Das, Arpita; Patil, A.N.; Nanda, H.C.; Kumar, Vinod; Rajput, Sumer D.; Chauhan, D.A.; Patel, M.H.; Kanwar, Raja R.; Kumar, Jitendra; Mishra, S.P.; Kumar, Hitesh; Swarup, Indu; Mogali, Suma; Kumaresan, D.; Manivannan, Narayana; Gowda, M. Byre; Pandiyan, Muthaiyan; Rao, Polneni J.; Shivani, D.; Prusti, A.M.; Mahadevu, P.; Iyanar, K.; Das, SujataCrop yield varies considerably within agroecology depending on the genetic potential of crop cultivars and various edaphic and climatic variables. Understanding site-specific changes in crop yield and genotype � environment interaction are crucial and needs exceptional consideration in strategic breeding programs. Further, genotypic response to diverse agro-ecologies offers identification of strategic locations for evaluating traits of interest to strengthen and accelerate the national variety release program. In this study, multi-location field trial data have been used to investigate the impact of environmental conditions on crop phenological dynamics and their influence on the yield of mungbean in different agroecological regions of the Indian subcontinent. The present attempt is also intended to identify the strategic location(s) favoring higher yield and distinctiveness within mungbean genotypes. In the field trial, a total of 34 different mungbean genotypes were grown in 39 locations covering the north hill zone (n = 4), northeastern plain zone (n = 6), northwestern plain zone (n = 7), central zone (n = 11) and south zone (n = 11). The results revealed that the effect of the environment was prominent on both the phenological dynamics and productivity of the mungbean. Noticeable variations (expressed as coefficient of variation) were observed for the parameters of days to 50% flowering (13%), days to maturity (12%), reproductive period (21%), grain yield (33%), and 1000-grain weight (14%) across the environments. The genotype, environment, and genotype � environment accounted for 3.0, 54.2, and 29.7% of the total variation in mungbean yield, respectively (p < 0.001), suggesting an oversized significance of site-specific responses of the genotypes. Results demonstrated that a lower ambient temperature extended both flowering time and the crop period. Linear mixed model results revealed that the changes in phenological events (days to 50 % flowering, days to maturity, and reproductive period) with response to contrasting environments had no direct influence on crop yields (p > 0.05) for all the genotypes except PM 14-11. Results revealed that the south zone environment initiated early flowering and an extended reproductive period, thus sustaining yield with good seed size. While in low rainfall areas viz., Sriganganagar, New Delhi, Durgapura, and Sagar, the yield was comparatively low irrespective of genotypes. Correlation results and PCA indicated that rainfall during the crop season and relative humidity significantly and positively influenced grain yield. Hence, the present study suggests that the yield potential of mungbean is independent of crop phenological dynamics; rather, climatic variables like rainfall and relative humidity have considerable influence on yield. Further, HA-GGE biplot analysis identified Sagar, New Delhi, Sriganganagar, Durgapura, Warangal, Srinagar, Kanpur, and Mohanpur as the ideal testing environments, which demonstrated high efficiency in the selection of new genotypes with wider adaptability. Copyright � 2022 Parihar, Gupta, Hazra, Lamichaney, Sen Gupta, Singh, Kumar, Singh, Vaishnavi, Jaberson, Das, Dev, Yadav, Jamwal, Choudhary, Khedar, Prakash, Dikshit, Panwar, Katiyar, Kumar, Mahto, Borah, Singh, Das, Patil, Nanda, Kumar, Rajput, Chauhan, Patel, Kanwar, Kumar, Mishra, Kumar, Swarup, Mogali, Kumaresan, Manivannan, Gowda, Pandiyan, Rao, Shivani, Prusti, Mahadevu, Iyanar and Das.