Browsing by Author "Pathak, Chandramani"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Publication Higher BCG-induced trained immunity prevalence predicts protection from COVID-19: Implications for ongoing BCG trials(Blackwell Publishing, 2022) Singh, Samer; Kishore, Dhiraj; Singh, Rakesh K.; Pathak, Chandramani; Ranjan, KishuEndeavors to identify potentially protective variables for COVID-19 impact on certain populations have remained a priority. Multiple attempts have been made to attribute the reduced COVID-19 impact on populations to their Bacillus�Calmette�Gu�rin (BCG) vaccination coverage ignoring the fact that the effect of childhood BCG vaccination wanes within 5 years while most of the COVID-19 cases and deaths have occurred in aged with comorbidities. Since the supposed protection being investigated could come from heterologous �trained immunity� (TI) conferred by exposure to Mycobacterium spp. (i.e., environmental and BCG), it is argued that the estimates of the prevalence of TI in populations currently available as latent tuberculosis infection (LTBI) prevalence would be a better variable to evaluate such assertions. Indeed, when we analyze the European populations (24), and erstwhile East and West Germany populations completely disregarding their BCG vaccination coverage, the populations with higher TI prevalence consistently display reduced COVID-19 impact as compared to their lower TI prevalence neighbors. The TI estimates of the populations not the BCG coverage per se, negatively correlated with pandemic phase-matched COVID-19 incidences (r(24): ?0.79 to ?0.57; p-value�<.004), mortality (r(24): ?0.63 to ?0.45; p-value�<.03), and interim case fatality rates (i-CFR) data. To decisively arrive at dependable conclusions about the potential protective benefit gained from BCG vaccination in COVID-19, the ongoing or planned randomized controlled trials should consciously consider including measures of TI as: (a) all individuals immunized do not respond equally, (b) small study groups from higher background TI could fail to indicate any protective effect. � 2022 The Authors. Clinical and Translational Discovery published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.Publication Insights of Endocytosis Signaling in Health and Disease(MDPI, 2023) Pathak, Chandramani; Vaidya, Foram U.; Waghela, Bhargav N.; Jaiswara, Pradip Kumar; Gupta, Vishal Kumar; Kumar, Ajay; Rajendran, Barani Kumar; Ranjan, KishuEndocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery. � 2023 by the authors.Publication Molecular and cellular paradigms of multidrug resistance in cancer(John Wiley and Sons Inc, 2022) Vaidya, Foram U.; Sufiyan Chhipa, Abu; Mishra, Vinita; Gupta, Vishal Kumar; Rawat, Shiv Govind; Kumar, Ajay; Pathak, ChandramaniBackground: The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. Recent Findings: An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. Conclusion: MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future. � 2020 The Authors. Cancer Reports published by Wiley Periodicals LLC.Publication Nimbolide induces cell death in T lymphoma cells: Implication of altered apoptosis and glucose metabolism(John Wiley and Sons Inc, 2021) Jaiswara, Pradip Kumar; Gupta, Vishal Kumar; Sonker, Pratishtha; Rawat, Shiv Govind; Tiwari, Rajan Kumar; Pathak, Chandramani; Kumar, Santosh; Kumar, AjayNimbolide is a tetranortriterpenoid derived from the leaves and flowers of Azadirachta indica (Neem). It exhibits anticancer activity against a variety of cancers by modulating various crucial features, including cell proliferation, apoptosis, and invasion and metastasis. More importantly, the cytotoxic effect of nimbolide has also been observed against T cell lymphoma, but the underlying mechanisms are still unexplored. So far, no study has been conducted to observe the effect of nimbolide on cancer cell metabolism. Therefore, the present investigation was designed to explore the molecular mechanisms of the antitumor potential of nimbolide against T cell lymphoma, a neoplastic disorder of thymic origin. In addition, we also unraveled the anti-glycolytic activity of nimbolide against T lymphoma cells with possible molecular mechanisms. Our results showed the cytotoxic action of nimbolide against three different cell lines of T cell lymphoma, namely Dalton's lymphoma, HuT-78, and J6. Nimbolide-induced apoptosis in T lymphoma cells by altering the level of reactive oxygen species, p53, Bcl2, Bax, and cytochrome c, with subsequent cleavage of caspase 3. Remarkably, nimbolide inhibited the expression of hypoxia-inducible factor-1?, glucose transporter 3, hexokinase II, and pyruvate dehydrogenase kinase 1, which led to the suppression of glycolysis with concomitant activation of oxidative phosphorylation. Hence, the results of the present investigation demonstrate that nimbolide exerts tumoricidal activity against T lymphoma cells via augmentation of apoptosis and reversal of altered cell metabolism. Thus, the present study provides a new insight for the therapeutic utilization of nimbolide against T cell lymphoma. � 2020 Wiley Periodicals LLC.Publication Phosphodiesterase 5 inhibitor sildenafil potentiates the antitumor activity of cisplatin by ROS-mediated apoptosis: a role of deregulated glucose metabolism(Springer, 2022) Rawat, Shiv Govind; Tiwari, Rajan Kumar; Jaiswara, Pradip Kumar; Gupta, Vishal Kumar; Sonker, Pratishtha; Vishvakarma, Naveen Kumar; Kumar, Santosh; Pathak, Chandramani; Gautam, Vibhav; Kumar, AjayCyclic nucleotide phosphodiesterase 5 (PDE5) has been recently identified to play a crucial role in the progression of many cancers. PDE5 promotes tumorigenesis by dysregulating various cellular processes such as proliferation, apoptosis, angiogenesis, and invasion and migration. Interestingly, multiple studies have reported the promising chemosensitizing potential of PDE5 inhibitor sildenafil in breast, colon, prostate, glioma, and lung cancers. However, to date, the chemosensitizing action of sildenafil is not evaluated in T cell lymphoma, a rare and challenging neoplastic disorder. Hence, the present investigation was undertaken to examine the chemosensitizing potential of sildenafil against T cell lymphoma along with elucidation of possible involvement of altered apoptosis and glucose metabolism. The experimental findings of this study showed that sildenafil enhances the cytotoxic ability of cisplatin by apoptosis induction through altering the levels of apoptosis regulatory molecules: Bcl-2, Bax, cytochrome c (Cyt c), cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP). These molecular alterations were possibly driven by sildenafil through reactive oxygen species (ROS). Sildenafil deregulates glucose metabolism by markedly lowering the expression of glycolysis regulatory molecules, namely glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), hexokinase II (HKII), pyruvate kinase M2 (PKM2), and pyruvate dehydrogenase kinase 1 (PDK1) via suppressing hypoxia-inducible factor 1-alpha (HIF-1?) expression. Hence, sildenafil potentiates the tumor cell killing ability of cisplatin by augmenting ROS production through switching the glucose metabolism from glycolysis to oxidative phosphorylation (OXPHOS). Overall, our study demonstrates that sildenafil might be a promising adjunct therapeutic candidate in designing novel combinatorial chemotherapeutic regimens against T cell lymphoma. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Publication Surface modified PAMAM dendrimers with gallic acid inhibit, cell proliferation, cell migration and inflammatory response to augment apoptotic cell death in human colon carcinoma cells(Taylor and Francis Ltd., 2021) Priyadarshi, Khushbu; Shirsath, Kavita; Waghela, N. Bhargav; Sharma, Anupama; Kumar, Ajay; Pathak, ChandramaniTo overcome the obstacle of anti-cancer therapy significant attention has been drawn for improving drug delivery system. Since recent past, different approaches were applied using synthetic or natural derivatives for improving efficacy of anti-cancer drugs in cancer therapeutics. Gallic acid (GA) is a natural polyphenol, which exhibits a broad spectrum of biological activities, but its therapeutic application was limited due to poor bioavailability and toxicity. In the present study, we had conjugated the GA with PAMAM dendrimers and proposed the insights of molecular mechanism on inhibition of cell proliferation and programmed cell death through apoptotic pathway in human colon carcinoma cells. GA was chemically conjugated with 4.0 G PAMAM dendrimer at outer surface and characterized by different biophysical methods. We further examined its bioavailability, anti-cancer activity and explored the molecular mechanism of programmed cell death signaling in HCT116 cells. The results show that PAMAM-GA conjugate inhibits cell proliferation of different origin of cancer cells, improves cellular uptake of GA, inhibits colonogenic ability, restricts cancer cell migration by down regulating the expression of MMP-9, inhibits NF-kB activation and release of pro-inflammatory cytokines to manifest apoptotic cell death in HCT 116 cells rather than necrosis. On other hand, PAMAM-GA conjugate showed negligible cytotoxic response as compared to the free Gallic acid to the normal cells. In conclusion, findings of this study revealed that PAMAM-GA conjugate improves the bioavailability of GA and specificity towards cancer cellsto manifests apoptotic cell death. This indispensable approach may be beneficial for the revolution of anti-cancer therapy. Communicated by Ramaswamy H. Sarma. � 2020 Informa UK Limited, trading as Taylor & Francis Group.