Publication:
Unravelling the multifarious role of wood vinegar made from waste biomass in plant growth promotion, biotic stress tolerance, and sustainable agriculture

Loading...
Thumbnail Image

Date

2025

Journal Title

Journal of Analytical and Applied Pyrolysis

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Research Projects

Organizational Units

Journal Issue

Abstract

The population of the world has increased intensively, and sustainable agriculture practices are important in achieving the zero-hunger goal. The agriculture sector is constantly facing serious problems caused by climate change and the occurrence of pesticide-resistant causal agents. In this context, one of the most crucial eco-friendly approaches, e.g., using plant-derived bioproducts, is gaining more attraction because they have multifarious potential to overcome challenges. Wood vinegar (WV) or pyroligneous acid (PA) is a liquid biomaterial that is produced by the thermo-pyrolysis process of woody biomass and it was defined as a reddish-brown aqueous liquid that contains methanol, acetic acid, tars, and wood oils by the distillation process of woods. PA production and their application in agricultural fields, have attracted more attention recently because they may work as good bio-stimulants, biopesticides, and biofertilizers. Therefore, it may open a novel, promising window for agriculture and food production. PA has a significant role in elevating plant agronomic activities such as seed germination and vigor index, plant growth, nutritional value, and crop yields. This review aims to discuss in detail the following items: 1) The composition of wood vinegar and its production system; 2) Seed priming with the PA process; 3) Investigation of the role of PA in plant growth promotion activities, biocontrol potential, and its applications for alleviating biotic stresses; 4) Describe the molecular mode of action of PA in suppressing plant diseases causal agents and promoting plant immunity through a well-illustrated diagram; 5) Evaluation of PA role in soil physicochemical, biological, and enzymatic activities and its impact on improving compost quality and curtailing emissions of green house gasses; 6) PA different advantages and limitations, as well as future perspectives for its usage and development. © 2024 Elsevier B.V.

Description

Keywords

Biotic stress tolerance, Greenhouse gases, Plant biomass pyrolysis, Sustainable agriculture, Wood vinegar

Citation

Collections