Publication:
Effect of Mn doping on the electronic and optical properties of Dy2Ti2O7: a combined spectroscopic and theoretical study

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal of Physics Condensed Matter

Journal ISSN

Volume Title

Publisher

Institute of Physics

Research Projects

Organizational Units

Journal Issue

Abstract

Electronic and optical studies on Dy2Ti2?Mn x O7 (x = 0.00, 0.05, 0.10, 0.15, & 0.20) have been presented through both, theoretical (density functional theory (DFT) calculations) and experimental (ultraviolet-visible absorption and photoluminescence emission spectroscopy) approaches. DFT calculations were employed considering the local density approximation (LDA) and LDA-1/2 for exchange-correlation interactions. Computed crystallographic parameters and energy band-gap using theoretical formulations are in good agreement with experimental results. The band-gap value obtained through the LDA-1/2 approach indicates insulated ground state of Dy2Ti2?xMn x O7 (x = 0.00, 0.05, 0.10, 0.15, 0.20) system. Experimentally obtained band gap value reduces from 3.82 eV to 2.45 eV with increase in positive chemical pressure as x increases from 0 to 0.20. Reduction in band gap value is attributed to the fact that there exists a lack of hybridization between the O-2p orbital and Ti-3d orbital, which is well correlated with the crystallographic data. Jahn-Teller effect is likely to be responsible for the presence of a mixed state of Mn (explained using x-ray photoelectron spectroscopy results), resulting in the intermediate Mn state between the valence band and the conduction band with immediate inclusion of Mn at Ti site in Dy2Ti2?x Mn x O7 system. � 2023 IOP Publishing Ltd.

Description

Keywords

density functional theory, electronic structure, frustrated systems, photoluminescence, UV-visible

Citation

Collections