Publication: Design and development of a multiwalled carbon nanotubes-based copper (II) Schiff base complex for the facile non-enzymatic electrochemical sensing of glucose
Loading...
Date
2023
Journal Title
Journal of Materials Science
Journal ISSN
Volume Title
Publisher
Springer
Abstract
A new bifunctional nanomaterial, [SBCu(II)Hyd]-MWCNTs, exhibiting exotic electrical and magnetic properties has been synthesized via chemical modification of MWCNT-COOH. Double probe DC electrical conductivity, CV and EIS studies show better conductivity of the material than that of MWCNT-COOH. With higher saturation and remanent magnetization, as well as coercivity, [SBCu(II)Hyd]-MWCNTs showed better ferromagnetic characteristics. Mott�Schottky electrochemical analysis was carried out to explore capacitive and dielectric properties. The enhancement in electrical conductivity of [SBCu(II)Hyd]-MWCNTs is also confirmed by optical and electrochemical band gaps studies. Subsequently, this material has been utilized to fabricate an electrochemical sensor by coating it over glassy carbon electrode for the determination of glucose. The corresponding sensitivity and limit of detection values are calculated to be 1.1 �A �M?1�cm?2 and 0.09��M, respectively. Graphical Abstract: [Figure not available: see fulltext.] � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.