Digital hemispherical photographs and Sentinel-2 multi-spectral imagery for mapping leaf area index at regional scale over a tropical deciduous forest
Loading...
Date
2024
Journal Title
Tropical Ecology
Journal ISSN
Volume Title
Publisher
Springer
Abstract
The leaf area index (LAI) provides valuable input for modeling climate and ecosystem processes. However, ground-based observations are necessitated across various phenophases from dense tropical forests for a better understanding in terms of their contribution to carbon fixation. In this study, Digital Hemispherical Photography (DHP) was used for LAI observation from Similipal Biosphere Reserve, and to predict high-resolution LAI using Random Forest Machine Learning approach. Observations were taken from ninety-three Elementary sampling units (ESUs) corresponding to the beginning and end of leaf fall seasons across moist deciduous, dry deciduous, and semi-evergreen forests. LAI demonstrated high values for dry deciduous, followed by semi-evergreen and moist deciduous forests for the start of the leaf fall season, whereas moist deciduous forests demonstrated high values during the end of the leaf fall season. Satellite-based spectral reflectance bands of Sentinel-2 and vegetation indices (VIs) were used as predictor variables, wherein the band-7, band-8, band-12, enhanced vegetation index (EVI), and Red-edge based EVI were evaluated as the most dominant responsive variables for LAI estimation. Random Forest (RF) model provided good accuracy (R2 = 0.64, RMSE = 0.62) with observed DHP-based LAI. However, a comparison of RF model-based predicted LAI with global LAI products (MOD15A2H and VNP15A2H) provided a moderate correlation. Such studies demonstrate the potential of site or region-specific case studies to evaluate coarser-resolution global LAI products for possible improvement. � International Society for Tropical Ecology 2024.
Description
Keywords
Digital hemispherical photography, Leaf area index, Random forest, Sentinel-2, Similipal biosphere reserve